Title Here
Diabetes Normal Sugars, Diabetes Treatment, Type 1 Diabetes Cure, Diabetes Management
Home Read It Online! Recipes Articles Search
Testimonials Links Buy It! Visit the NEW Diabetes Forum


What About the Widely Advocated Dietary Restrictions on Fat, Protein, and Salt, and the Current High-Fiber Fad?

Whether your renal risk profile is normal or abnormal, your resting blood pressure should also be measured. A proper measurement requires that you be seated in a quiet room, without conversation, for 15–30 minutes. Blood pressure should be measured every 5 minutes, until it drops to a low value and then starts to increase. The lowest reading is the significant one. If you get nervous in the doctor’s office, then you should measure your own blood pressure at home in a similar fashion. Repeated measurements, with low values just exceeding 135/ 85, suggest that your blood pressure is “borderline.” (The American Diabetes Association suggests that 120/80 be considered borderline for younger diabetics.) You then may benefit from dietary salt reduction. The only way to find out is to check your blood pressure while on your current salt intake, and again after following a low-salt (sodium) diet for at least two months.* Your physician can give you guidelines for such a diet, and you can consult nutritional tables such as those in the books listed in Chapter 3. I would suggest that resting blood pressures be measured several times a day, and at the same hours each day, throughout the study. Each day’s blood pressures can then be averaged, and the averages compared. If your blood pressure drops significantly on the low-salt diet, your physician may urge you to keep the salt intake down. Alternatively, he may want you to take small amounts of supplemental potassium, which tends to offset the effects of dietary salt on blood pressure.Recent studies suggest that as many as 40 percent of hypertensive patients (the so-called low-renin hypertensives) may show lower blood pressures when they take calcium supplements.


“Fiber” is a general term that has come to refer to the undigestible portion of many vegetables and fruits. Some vegetable fibers, such as guar and pectin, are soluble in water. Another type of fiber, which some of us call roughage, is not water soluble. Both types appear to affect the movement of food through the gut (soluble fiber slows processing in the upper digestive tract, while insoluble fiber speeds digestion farther down). Certain insoluble fiber products, such as psyllium, have long been used as laxatives. Consumption of large amounts of dietary fiber
is usually unpleasant, because both types can cause abdominal discomfort, diarrhea, and flatulence. Sources of insoluble fiber include most salad vegetables. Soluble fiber is found in many beans, such as garbanzos, and in certain fruits, such as apples.

I first learned of attempts at using fiber as an adjunct to the treatment of diabetes about twenty-five years ago. At that time, Dr. David Jenkins, in England, reported that guar gum, when added to bread, could reduce the maximum postprandial blood sugar rise from an entire meal by 36 percent in diabetic subjects. This was interesting for several reasons. First of all, the discovery occurred at a time when few new approaches to controlling blood sugar were appearing in the medical literature. Second, I missed the high-carbohydrate foods I had given up, and hoped I might possibly reinstate some. I managed to track down a supplier of powdered guar gum, and placed a considerable amount into a folded slice of bread. I knew how much a slice of bread would affect my blood sugar, and so as an experiment, I used the same amount of guar gum that Dr. Jenkins had used, and then ate the concoction on an empty stomach. The chore was difficult, because once moistened by my saliva, the guar gum stuck to my palate and was difficult to swallow. I did not find any change in the subsequent blood sugar increase. Despite the unpleasantness of choking down powdered guar gum (which is often used in commercial products such as ice cream as a thickener), I repeated this experiment on two more occasions, with the same result. Subsequently, some investigators have announced results similar to those of Dr. Jenkins, yet other researchers have found no effect on postprandial blood sugar. In any event, a reduction of postprandial blood sugar increase by only 36 percent really isn’t adequate for our purpose, since we’re shooting for the same blood sugars as nondiabetics. This means virtually no rise after eating.

*To complicate things somewhat, a 1998 report in the Journal of Clinical Endocrinology and Metabolism demonstrated that salt restriction in nonhypertensive type 2 diabetics reduced insulin sensitivity by 15 percent. A prior article in the American Journal of Hypertension found a similar effect in hypertensive individuals. Another study of rats, published in the journal Diabetes in 2001, found that this insulin resistance cannot be reversed by the insulin-sensitizing agent pioglitazone.

Dr. Jenkins also discovered, however, that the chronic use of guar gum resulted in a reduction of serum cholesterol levels. This is probably related to the considerable recirculation of cholesterol through the gut. The liver secretes some cholesterol into bile, which is released into the upper intestine. This cholesterol is later absorbed lower in the intestines, and eventually reappears in the blood. Guar binds the cholesterol in the intestines, so that rather than being absorbed, it appears in the stool. In the light of these very interesting results, other researchers studied the effect of foods (usually beans) containing other soluble forms of fiber. When beans were substituted for faster-acting forms of carbohydrate, postprandial blood sugars in diabetics increased more slowly, and the peaks were even slightly reduced. Serum cholesterol levels were also reduced by about 15 percent. But subsequent studies, reported in 1990, have uncovered flaws in the original reports, casting serious doubt upon any direct effect of these foods upon serum lipids. In any event, postprandial blood sugars were never normalized by such diets. Many popular articles and books have appeared advocating “high- fiber” diets for everyone—not just diabetics. Somehow, “fiber” came to mean all fiber, not just soluble fiber, even though the only viable studies had utilized such products as guar gum and beans.

In my experience, reduction of dietary carbohydrate is far more effective in preventing blood sugar increases after meals. The lower blood sugars, in turn, bring about improved lipid profiles.

A recent food to join the high-fiber trend is oat bran. This has gotten a lot of play in the popular press. A patient of mine started substituting oat bran muffins for protein in her diet. Before she started, her HgbA1C (see Chapter 2) was within the normal range and her ratio of total cholesterol to HDL was very low (meaning her cardiac risk ratio was low). After three months on oat bran, her HgbA1C became elevated and her cholesterol-to-HDL ratio nearly doubled. I tried one of her tiny oat bran muffins after first injecting 3 units of fast-acting insulin (as much as I use for an entire meal). After 3 hours, my blood sugar went up by about l00 mg/dl, to 190 mg/dl. This illustrates the adverse effect that most oat bran preparations can have upon blood sugar. This is because most such preparations contain flour. On the other hand, I find that certain bran products, such as the bran crackers listed in Chapter 10, raise blood sugar very little. Unlike most packaged bran products, they contain mostly bran and little flour. They therefore have very little digestible carbohydrate. You can perform similar experiments yourself. Just use your blood glucose meter. Beware of commercial “high-fiber” products that promise cholesterol reduction. If they contain carbohydrate, they must at least be counted in your meal plan and will probably render little or no improvement in your lipid profile.

Fiber, like carbohydrate, is not essential for a healthy life. Just look at the Eskimos and other hunting populations that survive almost exclusively on protein and fat, and don’t develop cardiac or circulatory diseases.*


For a number of years, the term “glycemic index” has popped in and out of the popular press. It also has been a pet subject for many dietitians and diabetes educators. I will explain why, but I think it’s important to make clear that there is simply no way to determine objectively how any given food at any given time is going to behave in any given individual, unless blood sugar is tested before and for a number of hours after its consumption. It sounds like an elegant idea—mashed potatoes do X; table sugar does Y. As with a lot of elegant ideas, however, the reality is far more complex.

*As the first edition of this book was going to press, a report appeared entitled “Dietary Fiber, Glycemic Load, and Risk of Non-Insulin-Dependent Diabetes in Women” (Jnl Amer Med Assoc 1997; 277:472–477). This study of 65,173 nurses and former nurses found a strong association between diets high in starch, flour, and sweet foods and the development of type 2 diabetes. Furthermore, consumption of minimally refined grain (such as bran without flour) lowered this risk. The combination of high glycemic foods and low intake of unrefined insoluble fiber was associated with a 2.5-fold higher incidence of diabetes. If you remember our discussion of beta cell burnout (pages 39–42), this should come as no surprise.

This term was, as I recall, first coined by the same Dr. Jenkins mentioned in the above section. The concept is more complicated than the popular press would have you believe.

Imagine two graphs, each depicting a curve of a blood sugar increase over a 3-hour time span. The first curve is after eating pure glucose, the standard. The second is after eating any other food of equivalent total carbohydrate content (20 grams glucose versus 20 grams carbohydrate
content of, say, rice).

Dr. Jenkins defined the glycemic index for a given food in terms of how its curve related to that of the glucose curve.

So to arrive at the index for rice, for example, the area under the 3- hour curve of blood sugar increase caused by the rice would be divided by the area under the curve for pure glucose. The measurement is usually made on a number of nondiabetics and then averaged, and finally expressed as a percent. Thus, if a food generates a 3-hour area one-fifth that of glucose, its glycemic index would be 20 percent.

PAGE  1  2  3  4  5


Get Entire

To save without viewing, right-click and choose Save Target As from pop-up menu

Quick Reference
This quick index helps you zoom in on chapter/article references dealing with a symptom or complication of diabetes. There may be other references throughout the site; always read the paragraphs or pages surrounding the reference in order to obtain proper context. A key to abbreviations is featured at the bottom of the chart.

amputation Ch.1
anemia B&A
arm pain B&A
arthritis B&A
cardiomyopathy /
cardiovascular disease
50yrs Ch.1 AppA 
cardiac neuropathy B&A B&A
cataracts / blindness 50yrs Ch.1 Ch.1 Ch.1 B&A App.A Articles
convulsions B&A
diarrhea, chronic Articles Articles
digestive problems B&A
erectile dysfunction (impotence) Ch.1 B&A B&A Ch.23
fatigue / fainting B&A B&A
feet, general App.E Articles Articles
feet, altered gait B&A Articles
feet, deformity 50yrs
feet, neuropathy B&A B&A B&A Ch.23 Articles Articles
feet, numbness B&A B&A
feet, pain Ch.1 B&A B&A
feet, scaly B&A
feet, ulcers B&A Articles
flatulence B&A
frozen shoulder 50yrs Ch.1
glaucoma B&A Articles
gluconeogenesis Ch.1
hand numbness B&A 
heart attack / blood clots Ch.1 App.A
headaches B&A
heart / arterial disease B&A B&A App.A
heartburn / belching / gastroparesis B&A Articles Articles
high cholesterol 50yrs B&A
hypertension / high blood pressure Ch.1 App.A App.A Ch.23 Articles Articles
hyperglycemia Ch.9
hyperinsulinemia Ch.1
hypoglycemia 50yrs 50yrs B&A B&A B&A Ch.1 Ch.9 Articles Articles Articles
ilio-tibial band/tensor fascia lata syndrome 50yrs
impaired glucose tolerance (IGT) Ch.1
joint inflammation / tightness Ch.1
ketoacidosis 50yrs B&A Articles Articles
kidney stones / kidney disease / nephropathy / infections 50yrs Ch.1 B&A B&A B&A B&A App.A App.A App.A Ch.9 Articles
leg pain B&A
macular edema 50yrs
microaneurysms 50yrs 50yrs
mood changes B&A
night blindness 50yrs
nerve damage Ch.1 Ch.1
obesity / weight gain B&A B&A B&A B&A  Ch.1 Ch.1 Ch.12 Articles
osteoporosis Ch.1
periodontal disease  Articles
peripheral vascular disease 50yrs
proteinuria 50yrs 50yrs
retinopathy Ch.1 B&A
salivary duct stones 50yrs
short-term memory loss / loss of mental activity  B&A Articles
skin tightness / skin conditions Ch.1 B&A
sleepiness B&A
sweating B&A B&A
thirst B&A
twitching limbs B&A
ulcers B&A
vision changes / diseases B&A B&A B&A B&A Ch.23 Articles Articles Articles

50yrs: "My First 50 Years as a Diabetic"
B&A: "Before & After: 14 Patients Share Their Experiences"
Ch.1: "Chapter 1", etc.
App.A: "Appendix A", etc.
Articles: References an item in the "Articles" section of the site.

Diabetes WebRing
[Previous] [Prev5] [Join] [Next5] [Next]
[Skip Previous] [Random] [List] [Skip Next]

Diabetes Management, Diabetes Treatment, Diabetes Education, Normal Blood Sugar Get Adobe Acrobat Now Tip: To save PDF's without viewing first, right-click the link and choose "Save Target As" from pop-up menu

Home Read It Online! Recipes Articles Search
Testimonials Links Buy It! Visit the NEW Diabetes Forum

Dr. Bernstein's Website is Developed and Maintained by Greg Chambers